ASSIGNMENT SET - I

Department of Mathematics

 Mugberia Gangadhar Mahavidyalaya

B.Sc Hon. (CBCS)

Mathematics: Semester-I
Paper Code: C1T
[Calculus, Geometry, Differential Equation]
Answer all the questions

1. Find the all the asymptotes of the curve $\mathrm{x}(y-x)^{2}-\mathrm{x}(\mathrm{y}-\mathrm{x})=2$.
2. Find the horizontal asymptotes for $f(x)=\frac{\left(x^{2}+3\right)}{x+1}$.
3. Differentiate $\sin \left(\cos x^{2}\right)$ with respect to x.
4. If $y=\sin \left(m \cos ^{-1} \sqrt{x}\right)$, then prove that $\lim _{x \rightarrow 0} \frac{y_{n+1}}{y_{n}}=\frac{4 n^{2}-m^{2}}{4 n+2}$.
5. Find $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that $\frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x} \rightarrow 2$, as $\mathrm{x} \rightarrow 0$.
6. If $I_{n}=\int_{0}^{1}(\ln x)^{n} \mathrm{dx}$, show that $I_{n}=(-1)^{n} \mathrm{n}$!. n being positive integer.
7. Find asymptote (if any) of the curve $\mathrm{y}=\mathrm{a} \log \left[\sec \frac{x}{a}\right]$.
8. Prove that $\cosh (x+y)=\cosh x$ cushy $+\sinh x$ sinhy.
9. Show that the curve $\mathrm{r} e^{\theta}=\mathrm{a}(1+\theta)$ has no point of inflexion.

10 . Find the point of inflexion of the curve $\mathrm{x}=\mathrm{a} \tan \theta, \mathrm{y}=\mathrm{a} \sin \theta \cos \theta$.
11. Show that the curve $y=e^{-x^{2}}$ has points of inflexion at $x= \pm \frac{1}{\sqrt{2}}$.
12.If $\mathrm{y}=\sin \left(\mathrm{m} \sin ^{-1} x\right)$ then show that $\left(1-x^{2}\right) y_{n+2^{-}}(2 \mathrm{n}+1) \mathrm{x} y_{n+1}+$ $\left(m^{2}-n^{2}\right) y_{n}=0$.
13.If $y^{\frac{1}{m}}+y^{\frac{-1}{m}}=2 \mathrm{x}$, then prove that $\left(x^{2}-1\right) y_{n+2}+(2 \mathrm{n}-1) \mathrm{x} y_{n+1}+$ $\left(n^{2}-m^{2}\right) y_{n}=0$.
14.If $\lim _{x \rightarrow 0} \frac{a \sin x-\sin 2 x}{\tan ^{3} x}$ is finite, find the value of a, and the limit.
15.Find the asymptotes of the curve $x^{3}+x^{2} y-\mathrm{x} y^{2}-y^{3}+x^{2}-y^{2}=2$.
16. A circle moves with its centre on the parabola $y^{2}=4 \mathrm{ax}$ and always passes through the vertex of the parabola. Show that the envelope of the circle is the curve $x^{3}+y^{2}(\mathrm{x}+2 \mathrm{a})=0$.
17. Show that the envelope of circles whose centres lie on the rectangular hyperbola $\mathrm{xy}=c^{2}$ and which pass through its centre is $\left(x^{2}+y^{2}\right)^{2}=16 c^{2} \mathrm{xy}$.
18. The envelope of the lines $\frac{x}{a}+\frac{y}{b}=1$ (a, b are variable parameters) is given by $\sqrt{x}+\sqrt{y}=\sqrt{k}$ (k is a given constant). Find the relation between a and b .
19. Find the envelope of the lines $\frac{x}{a}+\frac{y}{b}=1$ (a, b are variable parameters), where a, b are connected by the relation $a^{n}+b^{n}=c^{n}$.
20.Prove that the asymptotes of the curve $\mathrm{r}=\frac{a}{\frac{1}{2}-\cos \theta}$ are $\sqrt{3} \mathrm{r}(\sin \theta$ $\pm \sqrt{3 \cos \theta}) \pm 4 \mathrm{a}=0$.

UNIT-2

1. Obtained a reduction formula for $I_{n}=\int \sin ^{n} x d x$.
2. For any positive integer n prove that $\int_{0}^{\pi} \frac{\sin ^{2} n x}{\sin ^{2} x} \mathrm{dx}=\mathrm{n} \pi$.
3. Find the value of $\int \sin ^{5} x d x$.
4. Obtained a reduction formula for $I_{n}=\int \cos ^{n} x d x$.
5. Obtained a reduction formula for $I_{m, n}=\int \sin ^{m} \chi \sin ^{n} x d x$.
6. Prove that $\int_{0}^{\frac{\pi}{2}} \sin ^{m} x \sin ^{n} x d x=\frac{1.3 .5 \ldots(m-1) \cdot 1.3 .5 \ldots(n-1)}{2.4 \cdot 6 \ldots(m+n)} \frac{\pi}{2}$, if both m, n are even.
7. Obtained a reduction formula for $I_{m, n}=\int \cos ^{m} x \sin n x d x$.(m, n positive integers) and hence evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{5} x \sin 3 x d x$.
8. Obtained a reduction formula for $I_{m, n}=\int \cos ^{m} x \sin n x d x$.(m, n positive integers), then show that $I_{m, n}=\frac{1}{m+n}+\frac{m}{m+n} I_{m-1, n-1}$.
9. If m be a positive integer prove that $\int_{0}^{\frac{\pi}{2}} \cos ^{m} x \sin m x d x=\frac{1}{2^{m+1}}\left[2+\frac{2^{2}}{2}+\frac{2^{3}}{3}\right.$ $\left.+\ldots+\frac{2^{m}}{m}\right]$.
10.Obtained a reduction formula for $\int_{0}^{\frac{\pi}{2}} \cos ^{m} x \cos n x d x$, (m, n are positive integers), hence show that $\int_{0}^{\frac{\pi}{2}} \cos ^{m} x \cos m x d x=\frac{\pi}{2^{m+1}}, \mathrm{~m}$ being positive integer.
10. Find the length of the line segment on $2 y-2 x+3=0$ between $y=1$ and $y=$ 3.
11. Find the arc length of the curve $f(x)=\sqrt{ }$ from $x=0$ to $x=4$.
12. Find the area of the surface generated by revolving $y=\sqrt{25-x^{2}}$ on the interval $[-2,3]$ about the x-axis.
13. Find the area of the surface generated by revolving $x=1-t^{2}, y=2 t$, on the t -interval $[0,1]$ about the x -axis.
15.Find the length of the curve shown in Figure below, which is the graph of the function $y=\frac{4 \sqrt{2}}{3} x^{\frac{3}{2}}-1, \quad 0 \leq x \leq 1$.
16.: Find the length of the curve $y=(\mathrm{x} / 2)^{2 / 3}$ from $\mathrm{x}=0$ to $\mathrm{x}=2$.
17.Using the definition, find the length of the circle of radius r (circumference) defined parametrically by: $x=r \cos t$ and $y=r \sin t, 0 \leq t \leq 2 \pi$.
18.Find the length of the asteroid given in the Figure below, and defined parametrically by the following equations: $x=\cos 3 t$ and $y=\sin 3 t, 0 \leq t \leq$ 2π.
14. Find the length of the curve $x=8 \cos t+8 t \sin t$ and $y=8 \sin t-8 t \cos t$, $0 \leq t \leq \pi / 2$
15. Find the length of the curve $x=t^{3}$ and $y=\frac{2 t^{2}}{2}, 0 \leq t \leq \sqrt{ } 3$.

UNIT-3

1. Find the equation of the right circular cylinder whose axis is $\frac{x}{1}=\frac{y}{-2}=\frac{z}{2}$ and radius is 2 .
2. Find the polar equation of the normal to the conic $\frac{l}{r}=1+\mathrm{e} \cos \theta$.
3. Find the equation of the generator of the cone $x^{2}+y^{2}=z^{2}$ through the point $(3,4,5)$.
4. Find the equations of the straight lines in which the plane $2 x+y-z=0$ cuts the cone $4 x^{2}-y^{2}+3 z^{2}=0$.
5. On the ellipse $\mathrm{r}(5-2 \cos \theta) 21$, find the point with the greatest radius vector.
6. Reduction the equation $x^{2}+4 x y+y^{2}-2 x+2 y+6=0$, to its canonical form and show that it represents a hyperbola. Find the latus rectum and equation of the exist of the hyperbola.
7. Reduction the equation $3 x^{2}+10 x y+3 y^{2}-12 x-12 y+4=0$ to its canonical form. and determine the type of the conic represented by it.
8. Show that the auxiliary circle of the conic $\frac{l}{r}=1-\mathrm{e} \cos \theta$ is $r^{2}\left(e^{2}-1\right)+2$ ler $\cos \theta$.
9. Show that the locus of the poles of the normal cords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{a^{6}}{x^{2}}+\frac{b^{6}}{y^{2}}=\left(a^{2}-b^{2}\right)^{2}$
10.Find the equation of the conjugate diameter of the hyperbola $4 x^{2}-5 y^{2}=20$, if one of them passes through the point $(1,8)$.
11.Prove that the equation of the sphere circumscribing the tetrahedron whose faces are $\frac{y}{b}+\frac{z}{c}=0, \frac{z}{c}+\frac{x}{a}=0, \frac{x}{a}+\frac{y}{b}=0$, and, $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ is $\frac{x^{2}+y^{2}+z^{2}}{a^{2}+b^{2}+c^{2}}-\frac{x}{a}$ -$\frac{y}{b}-\frac{z}{c}=0$.
10. Reduce the equation $11 x^{2}+4 x y+14 y^{2}-26 x-32 y+23=0$ to standard form and hence write the eccentricity of the conic represented by it.
11. Reduce the equation $4 x^{2}+4 x y+y^{2}-12 x-6 y+5=0$ to its canonical form and determine its nature.
14.Find the locus of the centre of the sphere touching both the straight lines $y=m x, z=c$ and $y=-m x, z=-c$.
15 . Find the points on the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-4 z+2=0$ which is nearest and for these from the point $(2,-1,3)$. Also find the least and greatest distance of $(2,-1,3)$ from the sphere.
16.If a plane passes through a fixed point (α, β, γ) and cuts the axes at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, show that the locus of the centre of the sphere passing through the origin and the point $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ is $\frac{\alpha}{x}+\frac{\beta}{y}+\frac{\gamma}{z}=2$.
17.A variable sphere passes through the points $(0,0, \pm c)$ and cuts the straight lines $\mathrm{y}=\mathrm{x} \tan \alpha, \mathrm{z}=\mathrm{c}$ and $\mathrm{y}=-\mathrm{x} \tan \alpha, \mathrm{z}=-\mathrm{c}$ at the point P and P^{\prime} other than $(0,0, \pm c)$. If $\mathrm{P}^{\prime}=2 \mathrm{a}$ (constant), show that the centre of the sphere lies on the circle $x^{2}+y^{2}=\left(a^{2}-c^{2}\right) \operatorname{cosec}^{2} 2 \alpha, \mathrm{z}=0$.
12. Reduce the equation $4 x^{2}+4 x y+y^{2}-4 x-2 y+a=0$ to its canonical form and determine its nature for different values of a.
13. Show that the equation $x^{2}+2 \mathrm{xy}+y^{2}-4 \mathrm{x}+8 \mathrm{y}-6=0$ represent a parabola whose directrix is $3 x-3 y+8=0$.
20.A sphere of radius r passes through the origin and meets the axes in P, Q, R. Find the locus of the centroid of the triangle PQR .
14. A sphere touches the planes $2 x+3 y-6 x+14=0$, and $2 x+3 y-6 x+42=$ 0 and its centre lies on the line $2 x+z 0, y=0$. Find the equation of the sphere.
15. A sphere S has points $(0,1,0)$ and $(3,-5,2)$ as a possible ends of a diameter. Find the equation of the sphere on which the intersection of the plane $5 \mathrm{x}-$ $2 y+4 z+7=0$, with the sphere S is a great circle.
23.A sphere of constant radius r passes through passes through the origin and cuts he axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Prove that the locus of the foot of perpendicular from O on the plane ABC is given by $\left(x^{2}+y^{2}+z^{2}\right)^{2}\left(x^{-2}+y^{-2}+z^{-2}\right)$ $=4 r^{2}$.

UNIT-4

1. Determine the order and the degree of the differential equation

$$
\text { i. } \frac{d^{3} y}{d x^{3}}+\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+\left(\frac{d y}{d x}\right)^{4}+5 \mathrm{y}=8 \mathrm{x} .
$$

2. Find the differential equation of the following $y=a \cos x+b \sin x ; a, b$ are arbitrary constants.
3. State existence and uniqueness theorem of the solution of a first order and first degree differential equation.
4. Examine the differential equation is exact or not $\left(e^{x} \sin y+e^{-y}\right) \mathrm{dx}+$ $\left(e^{x} \cos y-x e^{-y}\right) \mathrm{dy}=0$.
5. Solve: $(x+y)^{2} \mathrm{dx}-\left(y^{2}-2 x y-x^{2}\right) \mathrm{dy}=0$.
6. Define integrating factor.
7. Find integrating factor of the differential equation $\left(x^{2}+y^{2}\right) \mathrm{dx}-2 \mathrm{xy} \mathrm{dy}=$ 0.
8. Solve: $\frac{2 x}{y^{3}} \mathrm{dx}+\frac{y^{2}-3 x^{2}}{y^{4}} \mathrm{dy}=0$.
9. Solve : $(2 x+\operatorname{tany}) d x+\left(x-x^{2}\right.$ tany $) d y=0$.
10. Solve : $\left(2 x y^{2}+y\right) d x+\left(2 y^{3}-x\right) d y=0$.
11. Solve: $\left(y^{4}+2 \mathrm{y}\right) \mathrm{dx}+\left(\mathrm{x} y^{3}+2 y^{4}-4 \mathrm{x}\right) \mathrm{dy}=0$.
12. Find the differential equation of the following
$13 . y=a \cos (\log x)+b \sin (\log x) ; a, b$ are arbitrary constants.
13. Show that the differential equation of all parabolas with foci at the origin and axes
along the $x-$ axis is $\mathrm{y}\left(\frac{d y}{d x}\right)^{2}+2 \mathrm{x} \frac{d y}{d x}-\mathrm{y}=0$.
14. Prove that the differential equation of the circles through the intersection of the circle $x^{2}+y^{2}=1$ and the line $\mathrm{x}-\mathrm{y}=0$ is $\left(x^{2}-2 \mathrm{xy}-y^{2}+1\right) \mathrm{dx}+\left(x^{2}+\right.$ $2 \mathrm{xy}-y^{2}-1$) dy $=0$.
16.If y_{1} and y_{2} solution of the equation $\frac{d y}{d x}+\mathrm{P}(\mathrm{x}) \mathrm{y}=\mathrm{Q}(\mathrm{x})$, and $y_{2}=z y_{1}$, than show that $\mathrm{z}=1+\mathrm{a} e^{-\int\left(\frac{Q}{y_{1}}\right) d x}$, where a is arbitrary constant.
15. Show that the general solution of the differential equation $\frac{d y}{d x}+\mathrm{P}(\mathrm{x}) \mathrm{y}=$ $\mathrm{Q}(\mathrm{x})$, can be written in the form $\mathrm{y}=\frac{Q}{P}-e^{-\int P d x}\left[e^{\int P d x} \mathrm{~d}\left(\frac{Q}{P}\right)+\mathrm{c}\right]$, where c is an arbitrary constant.
18.If $\frac{1}{M-N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=\mathrm{f}(\mathrm{x}+\mathrm{y})$, than differential equation $\mathrm{M} \mathrm{dx}+\mathrm{N} \mathrm{dy}=0$ has an integrating factor of the form $e^{-\int f(x+y) d(x+y)}$.
16. Show that the general solution of the differential equation $\frac{d y}{d x}+P(x) y=$ $\mathrm{Q}(\mathrm{x})$, can be written in the form $\mathrm{y}=\mathrm{k}(\mathrm{f}-\mathrm{g})+\mathrm{g}$, where k is a arbitrary constant and f, g be its particular solutions.
20.Reduce the differential equation $y^{2}(y-p x)=x^{4} p^{2}$ to Clairaut's form by the substitutions $\mathrm{u}=\frac{1}{x}, \mathrm{v}=\frac{1}{y}$, solve it for singular solution and extraneous loci, if any.
17. Use the transformation $\mathrm{y}=x^{2}$ and $\mathrm{v}=y^{2}$ to solve the equation $(\mathrm{px}-\mathrm{y})(\mathrm{py}+$ $\mathrm{x})=h^{2} \mathrm{p}$.
